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Title 

Design of Personal Rapid Transit Networks for Transit-Oriented Development Cities 
Introduction 
Personal rapid transit (PRT) is an automated transit system in which vehicles are sized to transport a 
batch of passengers on demand to their destinations, by means of nonstop and non-transfer on its own 
right-of-way. PRT vehicles run exclusively on its tracks, called guideways. The guideways are designed as 
elevated facilities above the ground, for purpose of eliminating at-grade crossings or interferences with 
other transportation modes. In US, PRT has been implemented as a mode of automated people movers 
at airports and institutions like schools, e.g., PRT system in West Virginia University campus in 
Morgantown, WV. Worldwide, PRT systems have been designed for several real world applications 
recently, including in Korea, Sweden, and United Arab Emirates. 
In the recent planning practice for urban development in future, there has been an increasing and 
sustained emphasis in the global community in sustainable transportation systems. Transit-oriented 
development (TOD) has emerged as a promising alternative for sustainable communities by creating 
compact environments using convenient and efficient public transportation systems. To facilitate TOD 
development, an alternative to the personal car needs to provide a public transit mode which offers the 
same door-to-door flexibility at an acceptable cost. This could be achieved through a mixed design of 
high passenger-flows mass transit and flexible public transportation carrying low passenger-flows for the 
times or places. PRT is one of such flexible systems serving a supplement mode for the TOD 
development, where a PRT system functions as a local area network, connecting the traditional transit 
systems and other means of transit modes within its network. 
Although PRT has been recognized as an important component of alternate solutions to passenger cars 
in sustainable transportation systems in the future, it has not yet achieved wide-spread commercial 
deployment in US. Two major downsides that restrict the PRT in the practical stage are the cost and line 
capacity. Both the cost and line capacity could be improved through an appropriate guideway network 
(GN) design, because a well-designed GN not only improves the connectivity and accessibility, but also 
provides more options in the route choice. In this study we investigate the methodology of PRT network 
design, to minimize both guideway construction cost and users’ travel cost. In particular we introduce a 
set of optional points, known as Steiner points, in the graph to reduce the guideway length. The model is 
formulated as a combined Steiner problem and assignment problem, and a Lagrangian relaxation based 
solution algorithm is developed to solve the problem. Numerical studies are carried on a realistic-sized 
network. We show the proposed model and solution algorithm can solve the PRT guideway network 
effectively. 
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Findings 
The following findings have resulted from the study. First, we present a model and solution algorithm 
for the GN design for the PRT supporting transit-oriented development. The GN is designed to balance 
two objectives, i.e., life-time construction cost and users’ travel cost. Second, the Steiner points can 
reduce the GN length as well as the construction costs substantially. The resultant GN design problem is 
then formulated as a combined Steiner problem and assignment problem. Third, we propose a 
Lagrangian relaxation algorithm to decompose the Lagrangian dual problem into two subproblems; both 
are trivial to solve. Finally, we use a realistic-sized numerical example to demonstrate the computational 
performance, and validate the fact that a set of Steiner points can reduce both construction cost and 
users’ travel cost significantly. 

Recommendations 
The research addressed in this project suggests that the proposed model can be used to assist PRT GN 
design supporting transit-oriented development. The proposed methodology can be applied to offline 
planning, or what-if scenario analysis. We show that the proposed Lagrangian relaxation algorithm can 
solve a realistic-size PRT example optimally in an efficient manner. 
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CHAPTER 1.  INTRODUCTION 

1.1 What is Personal Rapid Transit 

Personal rapid transit (PRT) is an automated transit system in which vehicles are 

sized to transport a batch of passengers on demand to their destinations, by means of 

nonstop and non-transfer on its own right-of-way (Anderson 1998). A PRT system 

provides a service similar to taxi, because passengers are served on demand, and there 

are no pre-determined schedules for PRT. At the PRT station, a group of passengers first 

select the intended destination station; a PRT vehicle is then dispatched to the station to 

carry the passengers to the desired destination. Stations are offline such that vehicles can 

accelerate/decelerate on auxiliary lanes without interfering with the vehicles passing by 

the main through-lanes; hence, a PRT vehicle can run in a non-stop manner via 

bypassing all intermediate stations (see Figure 1.1). Nowadays, PRT vehicles supported 

by modern technologies are usually designed running on electricity, and are operated by 

computer control requiring no driver. The size of a PRT vehicle can accommodate three 

to six passengers in general (see Figure 1.2).  

PRT vehicles run exclusively on its tracks, called guideways (see Figure 1.3). 

The guideways are designed as elevated facilities above the ground, for purpose of 

eliminating at-grade crossings or interferences with other transportation modes. In US, 

PRT has been implemented as a mode of automated people movers at airports and 

institutions like schools, e.g., PRT system in West Virginia University campus in 

Morgantown, WV (Sproule and Neumann 1991). Worldwide, PRT systems have been 

designed for several real-world applications recently, including in Korea (Suh 2001), 
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Sweden (Tegner, Hunhammar et al. 2007) and United Arab Emirates (Mueller and 

Sgouridis 2011).  

 

 
Figure 1.1 PRT Offline Stations 

 

   
Figure 1.2 PRT Vehicles 
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Figure 1.3 PRT Vehicles Runs on the Guideway 

 

1.2 Background and Motivation 

In the recent planning practice for urban development in future, there has been an 

increasing and sustained emphasis in the global community in sustainable transportation 

systems. The excessive use of personal cars has led to several issues, including 

congestion, energy consumption, air pollution, noise, safety and excessive land use. 

Transit-oriented development (TOD) has emerged as a promising alternative for 

sustainable communities overcoming the issues above by creating compact 

environments using convenient and efficient public transportation systems. TOD is 

deployed to reduce people’s dependence on personal cars for mobility and to help make 

livable and vibrant communities. The most vital element in a TOD design is the planning 

and the design of the public transportation network which serves the backbone of urban 

infrastructure systems (Lin and Shin 2008; Li, Guo et al. 2010). A recent trend in the 

TOD deployment is to introduce efficient transit systems such as bus rapid transit 
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(BRT), light rail transit (LRT) and personal rapid transit (PRT) (Parent 2006). Among 

these modes, PRT has received significant attention as it connects personal, private, and 

public transportation scales, and because of its flexible operational characteristics and 

competitive financial investments (Muir, Jeffery et al. 2009). For instance, Tegner et al. 

(2005) estimated that the construction cost of a PRT system is about a third that of light 

rail, as PRT has much smaller vehicle size and the lower design standard of guideways 

than LRT. 

Mass transportation systems such as trains, metros and rapid buses represent the 

major means of TOD development (see Figure 1.4). These modes are efficient in terms 

of transporting passengers measured by per unit of space or energy, provided that the 

demand is sufficiently enough. If the demand decreases, however, the ridership drops 

while the operation cost remains the same. Thus, the system’s efficiency degrades. This 

is a key reason why most mass transit systems reduce frequencies during off-peak hours 

(Clerget, Hafez et al. 2001). Hence, each mass transit system has a certain operating 

range in terms of passengers per hour to maintain an efficient operation of the system. 

To facilitate TOD development, an alternative to the personal car needs to provide a 

public transit mode which offers the same door-to-door flexibility at an acceptable cost. 

This could be achieved through a mixed design of high passenger-flows mass transit and 

flexible public transportation carrying low passenger-flows. PRT is one of such flexible 

system serving as a supplemental mode for TOD development, where a PRT system 

functions as a local area network, connecting the traditional transit systems and other 

means of transit modes within its network.  



5 
  
  

 
Figure 1.4 An example of TOD development in Maryland  

 (Source: (Central Maryland Transportation Alliance 2009)) 

PRT could be a sustainable solution to urban problems as well. Congestion in 

major cities results in not only severe travel time delay, but also excess energy use and 

emissions. PRT is one solution to reduce congestion on urban highways. Because PRT 

system is electrically powered, there is no emission, and thus overall energy and 

emission could be significantly reduced. Compared with automobiles, the benefit of 

energy saving for a PRT vehicle could be 75% less in general, and the benefit of CO2 

emission reduction could be more than 60% (Lowson 2003). Areas of land use are also 

reduced because of the small scale of the system, compared to the traditional road 

infrastructure.  

While PRT has been recognized as an important component of alternate solutions 

to passenger cars in sustainable transportation systems in the future, it has not yet 

achieved wide-spread commercial deployment in US. Two major downsides that restrict 

the PRT in the practical stage are the cost and line capacity. Studies show that the 

construction cost of guideways is estimated between $5–$15 million per lane per mile; 
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of the stations about $0.5–$3 million per station, and of the vehicles about $0.2–$0.7 

million per vehicle (in 1996 dollars) (Yoder, Weseman et al. 2000). Consider the PRT 

system at West Virginia University at Morgantown as a real example; it consists of 8.7 

miles of guideways and 5 stations, involving a cost over $126 million as of 1979 – about 

$319 million in 2004 dollars (Sproule and Neumann 1991). A majority of the cost is for 

the guideway construction. In this context, reduction of the guideway length is critical to 

reduce the life-time construction cost.  

The PRT may also have a limited line capacity as opposed to other public 

transportation systems. The line capacity is governed by allowable vehicle headways, 

which are further dictated by the safety requirement for a brick-wall stop. Since PRT is 

designed to provide the flexible door-to-door accessibility for a small group of 

passengers, the size of a PRT vehicle is small, accommodating up to 6 passengers. The 

current design of PRT speed is also relatively slow, due to not only the passengers’ 

comfort level, but also the low design standard for guideways for purpose to reduce the 

construction costs. For instance, the design speed of the Mogantown PRT system is up 

to 30 miles per hour (Juster and Schonfeld 2013). To meet the safety standard, the 

design of headway could range from 8 to 15 seconds in the current practice (Juster and 

Schonfeld 2013)1. The factors above lead to a limited line capacity of around 2,000 – 

2,500 passengers per hour, which is less than for conventional public transit modes with 

higher fleet size and operating speed.  

Both the cost and line capacity could be improved by an appropriate guideway 

network (GN) design, because a well-designed GN not only improves the connectivity 

and accessibility, but also provides more options in the route choice. Different from 

other public transportation modes generally running through a single line, a PRT system 

is usually designed as an interconnected system (or grid of guideways) with junctions. 

Since vehicles do not have to follow a pre-defined route, the system allows a PRT 

vehicle to flexibly select a route from a variety of routes in the network; and thus the 

overall throughput of the entire network could be improved (Carnegie and Hoffman 

1 Some studies argue that the headway could be reduced to as short as 3 seconds ideally. The standard, 
however, was never seen in operations of real-world PRT applications. 
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2007). This motivates the study of the PRT GN design investigated in this project, to 

reduce the GN length and maintain a desireable line capacity.  

 

1.3 Objective 

In this project we study the guideway network design for the personal rapid 

transit to support transit-oriented development. The guideway network design consists of 

two components, i.e., minimizing the guideway construction cost and users’ travel time. 

In particular, we introduce a set of optional points, known as Steiner points, in the graph 

to reduce the guideway length. The model is formulated as a combined Steiner problem 

and assignment problem, and a Lagrangian relaxation based solution algorithm is 

developed to solve the problem. Numerical studies are performed on a realistic-sized 

network. We show that the proposed model and solution algorithm can solve the PRT 

guideway network effectively. 

 

1.4 Organization 

This report is organized as follows. Chapter 2 briefly discusses the overall 

methodology, particularly with focus on a theoretical mechanism on how to reduce the 

GN length effectively. In Chapter 3 we propose a multi-commodity flow formulation for 

the GN network design, and propose a solution algorithm based upon Lagrangian 

relaxation. In Chapter 4 we present a case study to demonstrate the effectiveness of the 

proposed methodology. Finally some concluding comments are provided in Chapter 5. 
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CHAPTER 2.  METHDOLOGY 

2.1  Introduction 

PRT research has focused on network design (Ma and Schneider 1991; Won, Lee 

et al. 2006; Won and Karray 2008; Kornhauser 2009), capacity analysis (Lowson 2003; 

Johnson 2005; Schweizer and Mantecchini 2007; Lees-Miller, Hammersley et al. 2010; 

Mueller and Sgouridis 2011), and empty vehicle management to reduce the passengers’ 

waiting time (Andreasson 1994; Andreasson 2003; Lees-Miller, Hammersley et al. 

2010; Schweizer, Danesi et al. 2012). In this study we investigate the PRT GN design to 

support TOD deployment. That is, the model is multimodal and incorporates vehicle and 

transit networks and their interconnections, and integrates with other modes of public 

transit, commute bus, light rail, heavy rail, metro system, etc. The GN design involves 

two objectives that may conflict with each other. From the perspective of stakeholders, 

as the construction cost is proportional to the length of GN, one objective is to minimize 

the total GN length. From the user’s standpoint, an efficient GN system needs to reduce 

the users’ travel time, thus the second objective is to minimize the total passengers’ in-

vehicle travel time. These two objectives could conflict each other, leading to a bi-

criteria network design problem, and the optimal solution is known as pareto-optimal. In 

this study we assign different weights to the two objectives to balance the two criteria, 

therefore we solve the optimal solution with the weighted objective function rather than 

solving the pareto-optimal solution. 

Given a set of PRT stations (also called terminals) denoted by 𝑉, suppose the 

origin-destination (O-D) demand between the stations is given, the goal of GN design is 

to establish a graph 𝐺 = (𝑁,𝐴), where 𝑁 denotes a set of nodes, 𝐴 denotes a set of arcs 
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(also called links), connecting the PRT stations 𝑉  subject to two objectives: (1) 

minimizing the total link length; and (2) minimizing the total system travel time 

experienced by travelers. The first objective is intended to minimize the construction and 

maintenance cost of GN, and the second objective is to minimize travel time and 

improve the level of service for users. 

 

2.2 Reducing the GN length 

We show a set of intermediate points that may not be strictly needed to design 

the connecting network (GN) could be useful to reduce the length. In graph theory, such 

intermediate points optional in network connectivity are known as the Steiner points, 

and the problem is known as the Steiner problem on the graph. If the connecting 

network is restricted to a tree, the GN design subject to the minimum arc length is 

known as the min-cost Steiner tree problem (STP), which is NP-hard (Dreyfus and 

Wagner 1971; Hakimi 1971; Winter 1987). Figure 2.1 shows an example to illustrate 

that Steiner points appear critical in reducing the length in the GN design. More 

specifically, Figure 2.1(a) demonstrates the minimal length required to connect the three 

stations is 6, where the distance between each pair of stations is 2. Simply introduce an 

intermediate (Steiner) point in the middle, which is optional in connecting the three 

stations. Figure 2.1(b) shows that the length could be reduced to 3, half of the former 

case. 

2 2

2

1

1

1
Station

Steiner point

(a) GN without Steniner points (b) GN with Steniner points

 
Figure 2.1 Steiner Points to Reduce the Network Length 
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The PRT GN design in this study leverages the concept of Steiner points, as they 

are essential in reducing the GN length effectively. Note that the PRT GN design in our 

problem is not restricted to a tree, hence the formulated model exhibits the Steiner point 

feature (i.e., optional connecting points) but the problem is not a STP. Further, since 

PRT guideways are subject to the line capacity representing the maximal vehicle per 

hour that can be afforded by the PRT service, arcs in the network must have capacity – 

another component differentiating our model from the STP.  

 

2.3  Reducing the System Travel Time 

For the PRT GN design, we introduce another objective from users’ perspective 

to reduce the travel length by users. As a PRT vehicle travels at a constant speed in 

general, the PRT vehicle routing policy is the shortest distance (or travel time). Each 

link (𝑖, 𝑗) ∈ 𝐴  is associated with a constant traversal time 𝑡𝑖𝑗 , and capacity 𝑢𝑖𝑗 

representing the maximal hourly vehicular flow can pass the link. We then assign the O-

D demand in the GN such that the system travel time is minimal while obeying the 

capacity constraint. This is a multi-commodity flow assignment problem. 

The PRT GN design problem could be understood as a combined Steiner 

problem on the graph and min-cost multi-commodity flow assignment problem, as 

formulated in the next chapter. 
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CHAPTER 3.  MODEL FORMULATION AND LAGRANGIAN-

RELAXATION-BASED SOLUTION ALGORITHM 

3.1  Notation 

A personal rapid transit (PRT) guideway network (GN) 𝐺 = (𝑁,𝐴) consists of a 

set of nodes 𝑁 and a set of directed arcs 𝐴. A set of terminals (PRT stations) is denoted 

by 𝑉 ⊆ 𝑁 that must be connected by 𝐴. A set of nodes 𝑆 = 𝑁 − 𝑉 is the set of Steiner 

points. We assume the geographical locations of 𝑆 is given. Denote by 𝑐𝑖𝑗 the length, by 

𝑡𝑖𝑗 the travel time, and by 𝑢𝑖𝑗 the capacity of arc (𝑖, 𝑗) ∈ 𝐴, respectively. Flow assigned 

on arc (𝑖, 𝑗) is denoted by 𝑥𝑖𝑗. Denote the link construction decision by a binary variable 

𝑦𝑖𝑗 ∈ {0,1}; 𝑦𝑖𝑗 = 1 if link (𝑖, 𝑗) is constructed, 𝑦𝑖𝑗 = 0 otherwise. 

Denote by 𝑃  a set of origins and 𝑄  a set of destinations. A set of origin-

destination (O-D) pairs is denoted by a vector 𝐾 ≔ {(𝑝, 𝑞) | 𝑝 ∈ 𝒫, 𝑞 ∈ 𝒬}. Denote by 

𝑘 ∈ 𝐾 a commodity associate with the O-D pair (𝑝, 𝑞). Let 𝑝(𝑘) represent the origin of 

commodity 𝑘  and 𝑞(𝑘)  represent the destination of commodity 𝑘 . Let 𝑏𝑘  be the 

corresponding O-D demand. Denote by 𝑥𝑖𝑗𝑘  the amount of commodity 𝑘 assigned on arc 

(𝑖, 𝑗).  

 

3.2 Multi-commodity Flow Formulation 

The PRT GN problem is formulated as a multi-commodity flow problem as 

follows. 
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𝑚𝑖𝑛
𝐱,𝐲

𝛼 � 𝑐𝑖𝑗 ∙ 𝑦𝑖𝑗 + 𝛽� � 𝑥𝑖𝑗𝑘 ∙ 𝑡𝑖𝑗
(𝑖,𝑗)∈𝐴𝑘∈𝐾(𝑖,𝑗)∈𝐴

  (1a) 

s.t. 
� 𝑥𝑖𝑗𝑘 − � 𝑥𝑗𝑖𝑘 = �

𝑏𝑘 𝑖 = 𝑝(𝑘)
−𝑏𝑘 𝑖 = 𝑞(𝑘)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴

 ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑁 (1b) 

 𝑥𝑖𝑗𝑘 ≤ 𝑦𝑖𝑗 ∙ 𝑏𝑘 ∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐴 (1c) 

 �𝑥𝑖𝑗𝑘 ≤ 𝑢𝑖𝑗
𝑘∈𝐾

 ∀(𝑖, 𝑗) ∈ 𝐴 (1d) 

 𝑀1 ≤ � 𝑦𝑖𝑗
(𝑖,𝑗)∈𝐴

≤ 𝑀2  (1e) 

 𝑥𝑖𝑗𝑘 ≥ 0 ∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗) ∈ 𝐴 (1f) 

 𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (1g) 

 

The first term of the objective function is to minimize total guideway length, or 

to minimize the construction (and maintenance) cost of guideways. The second term is 

to minimize users’ total travel time. The overall objective function is balanced by 

assigning different weights, 𝛼 and 𝛽, to the first and second term respectively. Eq. (1b) 

is flow mass balance constraint for each commodity 𝑘 ; Eq. (1c) indicates that a 

commodity on arc (𝑖, 𝑗) can be positive only if (𝑖, 𝑗) is constructed (i.e., 𝑦𝑖𝑗 = 1), and it 

is zero if (𝑖, 𝑗) is not constructed (i.e., 𝑦𝑖𝑗 = 0). Note that the amount of commodity 𝑘 on 

an arc (𝑖, 𝑗) is at most 𝑏𝑘. Constraints (1b)-(1c) indicates that a feasible solution must 

have a directed path of arcs (i.e., 𝑦𝑖𝑗 = 1) for each commodity 𝑘 ∈ 𝐾. Thus we model 

the network connectivity via an embedded multi-commodity network flow problem. 

Eq.(1d) is the capacity constraint as the PRT guideway in general is subject to the 

maximal service rate. If the problem is uncapacitated, we assign 𝑢𝑖𝑗 a sufficiently large 
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number. To maintain connectivity between the terminal set 𝑉, Eq.(1e) indicates that the 

number of constructed arcs is bounded between [𝑀1,𝑀2]. To connect |𝑉| terminals it 

requires at least |𝑉| − 1 arcs (i.e., terminal 𝑉 is connected by a tree in a complete graph), 

so the lower bound of 𝑀1  is |𝑉| − 1. At most all arcs are constructed, so the upper 

bound of 𝑀2 is |𝐴|. Therefore initially one can set 𝑀1: = |𝑉| − 1, and 𝑀2: = |𝐴|. Eq.(1e) 

is redundant, however, it can be shown in the later discussion that this range could be 

tightened in the algorithmic procedure and thus provides a better bound (Beasley 1984). 

Finally Eq.(1f) specifies flow nonnegativity, and Eq.(1g) specifies a binary variable of 

𝑦𝑖𝑗. 

To make the formulation stronger, we denote by 𝑓𝑖𝑗𝑘 the proportion of commodity 

𝑘 assigned on arc (𝑖, 𝑗), i.e., 𝑓𝑖𝑗𝑘 =
𝑥𝑖𝑗
𝑘

𝑏𝑘
, we can reformulate the problem as follows. 

𝑚𝑖𝑛
𝐟,𝐲

𝛼 � 𝑐𝑖𝑗 ∙ 𝑦𝑖𝑗 + 𝛽� � 𝑓𝑖𝑗𝑘 ∙ 𝑡𝑖𝑗 ∙ 𝑏𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝐾(𝑖,𝑗)∈𝐴

  (2a) 

s.t. � 𝑓𝑖𝑗𝑘 − � 𝑓𝑗𝑖𝑘 = �
1 𝑖 = 𝑝(𝑘)
−1 𝑖 = 𝑞(𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴

 
∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗)

∈ 𝐴 (2b) 

 𝑓𝑖𝑗𝑘 ≤ 𝑦𝑖𝑗 
∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗)

∈ 𝐴 (2c) 

 �𝑓𝑖𝑗𝑘 ∙ 𝑏𝑘
𝑘∈𝐾

≤ 𝑢𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (2d) 

 0 ≤ 𝑓𝑖𝑗𝑘 ≤ 1 
∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗)

∈ 𝐴 (2e) 

 (1e, 1g)   
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Note that Eq.(2c) can be written into an aggregate constraint in Eq.(3). In the 

Lagrangian relaxation framework, dualizing Eq.(2c) involves |𝐾| ∙ |𝐴| multipliers, and 

dualizing Eq.(3) leads to |𝐴| multipliers. As Eq.(2c) is stronger than the aggregated 

constraint (3), the former provides a better bound, which is a desirable feature in the 

algorithmic development. Therefore, we use the disaggregate constraint (2c) in the PRT 

model formulation. 

 �𝑓𝑖𝑗𝑘

𝑘∈𝐾

≤ |𝐾| ∙ 𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3) 

 
3.3  Lagrangian Relaxation 

Eq.(2c) is the hard constraint coupling the flow assignment and network 

connectivity components. We dualize (2c) by associating a nonnegative Lagrangian 

multiplier 𝛌 = (𝜆𝑖𝑗𝑘 )𝑘∈𝐾,(𝑖,𝑗)∈𝐴 ≥ 0, the Lagrangian dual problem (𝐿𝐷) is as follows. 

𝐿𝐷: 𝑚𝑎𝑥
𝛌

𝑚𝑖𝑛
𝐟,𝐲

� (𝛼 ∙ 𝑐𝑖𝑗 −� 𝜆𝑖𝑗𝑘

𝑘∈𝐾

) ∙ 𝑦𝑖𝑗 + � � (𝛽 ∙ 𝑡𝑖𝑗 ∙ 𝑏𝑘 + 𝜆𝑖𝑗𝑘 )
(𝑖,𝑗)∈𝐴𝑘∈𝐾(𝑖,𝑗)∈𝐴

∙ 𝑓𝑖𝑗𝑘 (4) 

s.t. (1e,1g,2b, 2d, 2e)   

 

We intend to solve 𝐿𝐷 instead of solving the primal problem directly. Given a set 

of Lagrange multipliers, we call the sub-problem of LD the Lagrangian relaxation 

problem 𝐿𝑅 (formulated by Eqs. (5), (1e) – (1g), (2b) and (2d) – (2e)) with parameter 

𝛌 ≥ 0. The goal is to solve the Lagrange multiplier 𝛌 that maximizes 𝐿𝐷. This can be 

done by a sub-gradient algorithm if 𝐿𝑅 can be solved efficiently.  

𝐿𝑅: 𝑚𝑖𝑛
𝐟,𝐲

� (𝛼 ∙ 𝑐𝑖𝑗 −� 𝜆𝑖𝑗𝑘

𝑘∈𝐾

) ∙ 𝑦𝑖𝑗 + � � (𝛽 ∙ 𝑡𝑖𝑗 ∙ 𝑏𝑘 + 𝜆𝑖𝑗𝑘 )
(𝑖,𝑗)∈𝐴𝑘∈𝐾(𝑖,𝑗)∈𝐴

∙ 𝑓𝑖𝑗𝑘 (5) 

s.t. (1e,1g,2b, 2d, 2e)   
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Problem 𝐿𝑅 can be separated into two subproblems, 𝐿𝑅(1) and 𝐿𝑅(2), which are 

independent each other by inspection. 𝐿𝑅(1) is the network connectivity subproblem, 

and 𝐿𝑅(2) is the flow assignment subproblem. Below we show both problems could be 

solved trivially.  

𝐿𝑅(1): 𝑚𝑖𝑛
𝐲

� (𝛼 ∙ 𝑐𝑖𝑗 −� 𝜆𝑖𝑗𝑘

𝑘∈𝐾

) ∙ 𝑦𝑖𝑗
(𝑖,𝑗)∈𝐴

 (6a) 

 𝑀1 ≤ � 𝑦𝑖𝑗
(𝑖,𝑗)∈𝐴

≤ 𝑀2  (6b) 

s.t. 𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (6c) 

 

𝐿𝑅(2): 𝑚𝑖𝑛
𝐟

� � (𝛽 ∙ 𝑡𝑖𝑗 ∙ 𝑏𝑘 + 𝜆𝑖𝑗𝑘 )
(𝑖,𝑗)∈𝐴𝑘∈𝐾

∙ 𝑓𝑖𝑗𝑘 (7a) 

s.t. � 𝑓𝑖𝑗𝑘 − � 𝑓𝑗𝑖𝑘 = �
1 𝑖 = 𝑝(𝑘)
−1 𝑖 = 𝑞(𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑗,𝑖)∈𝐴(𝑖,𝑗)∈𝐴

 ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑁 (7b) 

 �𝑓𝑖𝑗𝑘 ∙ 𝑏𝑘
𝑘∈𝐾

≤ 𝑢𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (7c) 

 0 ≤ 𝑓𝑖𝑗𝑘 ≤ 1 
∀𝑘 ∈ 𝐾,∀(𝑖, 𝑗)

∈ 𝐴 (7d) 

 

𝐿𝑅(1) could be easily solved by inspection. Denote a composite cost 𝑐𝑖𝑗′ = 𝛼 ∙

𝑐𝑖𝑗 − ∑ 𝜆𝑖𝑗𝑘𝑘∈𝐾 , we rank arcs in 𝐴  according to the increasing order of 𝑐𝑖𝑗′ . Let 𝑟𝑖𝑗 

represent the order of an arc (𝑖, 𝑗). The optimal solution of 𝐿𝑅(1) is 
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𝑦𝑖𝑗 = �
1 𝑖𝑓 𝑟𝑖𝑗 ≤ 𝑀1

1 𝑖𝑓 𝑐𝑖𝑗′ ≤ 0 𝑎𝑛𝑑 𝑀1 < 𝑟𝑖𝑗 ≤ 𝑀2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

 

Eq.(8) indicates that 𝑦𝑖𝑗 = 1  for the first 𝑀1  arcs with the smallest 𝑐𝑖𝑗′ , and 

𝑦𝑖𝑗 = 1 for the remaining arcs which admit 𝑐𝑖𝑗′ ≤ 0. 

𝐿𝑅(2) can be easily solved too as it is simply a multi-commodity network flow 

problem which is a linear programming.  

 

3.4 Solving the Lagrangian Dual Problem 

The sub-gradient approach is a routine method to solve many Lagrangian dual 

problems. It generates a sequence 𝛌0 , 𝛌1 ,…, 𝛌𝑛  of Lagrange multiplier vectors 

heuristically following a descent direction. At each iteration, we solve the Lagrangian 

relaxation problem 𝐿𝑅 by solving 𝐿𝑅(1) and 𝐿𝑅(2) separately. Eq.(5) then provides an 

optimal solution of 𝐿𝑅 for a given 𝛌, which is a lower bound to the primal problem 

denoted by 𝑍𝐿𝐵. Based on the solution of 𝐟 solve by 𝐿𝑅(2), we can also obtain a feasible 

solution of 𝐲  to the primal problem trivially, by setting 𝑦𝑖𝑗 = 1|(𝑖, 𝑗) ∈ 𝕊 , where 𝕊 

denotes the arc set 𝕊 = {(𝑖, 𝑗)|𝑓𝑖𝑗𝑘 > 0,∀(𝑖, 𝑗) ∈ 𝐴,𝑘 ∈ 𝐾}. It implies that if an arc (𝑖, 𝑗) 

carries positive flows for a commodity 𝑘, then (𝑖, 𝑗) must be constructed in a feasible 

solution. The feasible solution 𝐲  and 𝐟  then provides an upper bound to the primal 

problem by Eq.(1a), denoted by 𝑍𝑈𝐵 . Denote by 𝑍𝑈𝐵𝑚𝑖𝑛 , 𝑍𝐿𝐵𝑚𝑎𝑥  the best upper and best 

lower bound that has been obtained by the algorithm, respectively. The duality gap is 

then specified by 𝐺𝐴𝑃 = 𝑍𝑈𝐵𝑚𝑖𝑛 − 𝑍𝐿𝐵 . If 𝐺𝐴𝑃  does not satisfy the stop criterion, the 

algorithm then generates a new Lagrange multiplier vector 𝛌𝑛+1  by a sub-gradient 

method. We apply the heuristic method proposed by Held and Karp (1971) to update 

𝛌𝑛+1: 
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𝛌𝑛+1 = max {𝛌𝑛 + 𝜃𝑛
𝑍𝑈𝐵𝑚𝑖𝑛 − 𝐿𝐷(𝛌𝑛 )

�𝑠�𝛌𝑛 ��
2 𝑠(𝛌𝑛 ), 0}  (9) 

where 𝐿𝐷(𝛌𝑛) denotes an optimal solution to 𝐿𝑅 with a given 𝛌𝑛, 𝜃𝑛 is a step-

size length (a scalar) with 0 ≤ 𝜃𝑛 ≤ 2, and 𝑠(𝛌𝑛) defines the sub-gradient direction 

specified by the relaxed equation (2c), which is: 

𝑠(𝛌𝑛) = 𝑓𝑖𝑗𝑘 − 𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (10) 

For the iterative technique used to determine successive values of 𝛌, the choice 

of step size 𝜃𝑛 strongly affects the convergence of 𝐿𝐷. We choose the step size 𝜃 by 

𝜃 = 5/√𝑛, where 𝑛 denotes the iteration number. 

We generate a sequence 𝛌0, 𝛌1,…, 𝛌𝑛 and compute 𝑍𝐿𝐵, 𝑍𝑈𝐵  and 𝐺𝐴𝑃. Repeat 

the procedure until 𝐺𝐴𝑃  convergences to the stop criterion; we then terminate the 

algorithm with the best feasible solution. The sub-gradient algorithm solving the 𝐿𝐷 is 

presented as follows: 

Algorithm: Solving the Lagrangian dual problem (𝐿𝐷) for the PRT GN design 

 Step 1: Set 𝑛 ≔ 0. Initialize a nonegative dual vector 𝛌𝑛.  

 Step 2: Solve 𝐿𝑅(1) and 𝐿𝑅(2) with parameter 𝛌𝑛. Compute 𝑍𝐿𝐵 by Eq.(5). 

 Step 3: 
Based on solution of 𝐿𝑅(2), construct feasible solution of 𝐲; compute 

𝑍𝑈𝐵 by Eq.(1a). 

 Step 4: 
Calculate 𝐺𝐴𝑃. If 𝐺𝐴𝑃 satisfies the stop criterion, stop; otherwise go to 

Step 5. 

 Step 5: 𝑛 ≔ 𝑛 + 1. Update 𝛌𝑛 by Eqs. (9) – (10), go to Step 2. 
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3.5 Generating Cuts to Tighten Lagrangian Lower Bound 

In this section we discuss three cuts to tighten the Lagrangian lower bound. 

Denote by 𝐴0 a subset of arcs that has been identified must not be constructed. Denote 

by 𝐴1 a subset of arcs that has been identified must be constructed. 

(1) Fix 𝑦𝑖𝑗 = 0 

At each Lagrangian iteration when we solve 𝐿𝑅(1) ; let 

𝑐′′ = max(𝑖,𝑗)∈𝐴�𝑐𝑖𝑗′ �𝑦𝑖𝑗 = 1�   and 𝑐′′′ = min {𝑐𝑖𝑗′ |𝑦𝑖𝑗 = 0}. Recall that we scan arcs in 

the increasing order of 𝑐𝑖𝑗′ ; we then identify the first arc (𝑣,𝑤)  such that 𝑐𝑣𝑤′ −

max {0, 𝑐′′} > 𝑍𝑈𝐵𝑚𝑖𝑛 − 𝑍𝐿𝐵. The set of arcs whose order is more than that of (𝑣,𝑤), i.e., 

{(𝑖, 𝑗)|𝑟𝑖𝑗 ≥ 𝑟𝑣𝑤}, can be fixed by 𝑦𝑖𝑗 = 0 and added into 𝐴0.  

This is because that suppose 𝑦𝑣𝑤 = 1, then the objective function of 𝐿𝑅(1) will 

increase. Consider the following two possibilities. (1) Suppose 𝑐′′ > 0; it implies 𝑀1 is 

binding; the objective function value will increase by 𝑐𝑣𝑤′ − 𝑐′′ . (2) Suppose 𝑐′′ ≤ 0; it 

implies 𝑀1 is not binding; the objective function will increase by 𝑐𝑣𝑤′ . In both cases the 

new objective function will increase by 𝑐𝑣𝑤′ − max{0, 𝑐′′}. Suppose 𝑦𝑣𝑤 = 1 then the 

new Lagrangian lower bound equals 𝑍𝐿𝐵′ = 𝑍𝐿𝐵 + 𝑐𝑣𝑤′ − max {0, 𝑐′′} > 𝑍𝑈𝐵𝑚𝑖𝑛 , which 

violates the Lagrangian duality theory and thus is not possible. The same result also 

applies to the set of arcs {(𝑖, 𝑗)|𝑟𝑖𝑗 ≥ 𝑟𝑣𝑤}, which can be added to 𝐴0 and be eliminated 

from the problem. 𝑀2 can be tightened by 𝑀2: = min {𝑀2, |𝐴| − |𝐴0|}. □ 

(2) Fix 𝑦𝑖𝑗 = 1 

At each Lagrangian iteration when we solve 𝐿𝑅(2), we restrict 𝑦𝑖𝑗 = 0 one by 

one for each (𝑖, 𝑗) ∈ 𝐴 − 𝐴0 − 𝐴1 (the subset of arcs that has not been fixed) meanwhile 

𝑦𝑖𝑗 = 1  in the solved solution 𝐲 . Let (𝑣,𝑤)  be such an arc. We then calculate the 

optimal Lagrangian lower bound subject to 𝑦𝑣𝑤 = 0 as follows. For 𝐿𝑅(1), the penalty 

𝑒1  is subject to two possible conditions. If ∑ 𝑦𝑖𝑗(𝑖,𝑗)∈𝐴 > 𝑀1 , there is 𝑒1 = −𝑐𝑣𝑤′ ; 

otherwise ∑ 𝑦𝑖𝑗(𝑖,𝑗)∈𝐴 = 𝑀1 , there is 𝑒1 = −𝑐𝑣𝑤′ + 𝑐′′′ . To compute the penalty for 

𝐿𝐷(2), denoted by 𝑒2, we restrict 𝑢𝑣𝑤 = 0 and solve the restricted 𝐿𝑅(2) by LP; let 𝑍𝑅 
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be the corresponding objective function value of the restricted 𝐿𝑅(2), and 𝑍2  be the 

objective function value of non-restricted 𝐿𝑅(2). The penalty of 𝐿𝑅(2) equals 𝑍𝑅 − 𝑍2. 

The addition of penalties imposed on both 𝐿𝑅(1) and 𝐿𝑅(2) is then compared with 

𝑍𝑈𝐵𝑚𝑖𝑛 − 𝑍𝐿𝐵. If 𝑒1 + 𝑒2 > 𝑍𝑈𝐵𝑚𝑖𝑛 − 𝑍𝐿𝐵, we can fix 𝑦𝑣𝑤 = 1 and add (𝑣,𝑤) into 𝐴1. The 

logic is that suppose 𝑦𝑣𝑤 = 0; the new Lagrangian lower bound would be more than 

𝑍𝑈𝐵𝑚𝑖𝑛 and thus is impossible. 𝑀1 can be tightened by 𝑀1 = max {𝑀1, |𝐴1|}.  

(3) Penalties on number of arcs 

At each Lagrangian iteration when we solve 𝐿𝑅(1) , we solve the restricted 

problem by fixing ∑ 𝑦𝑖𝑗 = 𝑀1(𝑖,𝑗)  and ∑ 𝑦𝑖𝑗 = 𝑀2(𝑖,𝑗) , respectively. If the Lagrangian 

lower bound is more than the best upper bound 𝑍𝑈𝐵𝑚𝑖𝑛, it implies the restricted problem is 

infeasible; therefore we then can tighten 𝑀1 or 𝑀2 by 1. 

(4) Problem reduction 

Denoted by 𝑑𝑖𝑗  the shortest distance with respect to 𝑐𝑖𝑗  between nodes 𝑖 and 𝑗. 

𝑑𝑖𝑗  can be calculated by an all pairs shortest path algorithm, for instance, Floyd–

Warshall algorithm. Any node 𝑖 ∈ 𝑁 − 𝑉  with min𝑙∈𝑉 𝑑𝑙𝑖 + min𝑗∈𝑉 𝑑𝑖𝑗 > 𝑍𝑈𝐵𝑚𝑖𝑛  is not 

possible to be visited in an optimal solution, and thus can be eliminated from the 

problem.
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CHAPTER 4.  NUMERICAL EXAMPLE 

In this chapter, we analyze a real-sized example to verify the PRT GN 

methodology and examine the algorithmic performance of the proposed method. The 

Lagrangian relaxation algorithm was coded in IBM ILOG CPLEX Optimization Studio 

12.5.1 interfaced with MATLAB 2010b in Windows 7. Problem 𝐿𝑅(1) was solved by 

inspection; 𝐿𝑅(2) was a LP and solved by CPLEX12.1. We solve the PRT GN problem 

on a PC equipped with a 2.66-GHz Intel(R) Xeon(R) E5640 CPU with 24 GB of 

memory. 

The network of the numerical example is multi-modal, and is illustrated in Figure 

4.1. It contains 28 nodes and 43 arcs (two-way), with a total length 140 miles. It consists 

of 3 light rail stations, 13 PRT stations and 6 Steiner points. The size of the example is 

sufficiently larger than most PRT designs in the current practice. To build the network 

we suppose each mile of guideway costs $10M. Characteristics of the network are 

tabulated in Table 1. 

Table 4.1 Characteristics of the Network 

Item Characteristics 
Guideway cost $10 million/mile 
Operating speed 30 mile/hr 
Capacity 1,000 passenger cars 
Value of time $ 20 passenger/hr 
𝛼 0.5 
𝛽 0.5 
K factor 0.2 
Life cycle 10 years 
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Figure 4.1 Network in the Numerical Example 

 

The hourly demand of the scenario is hypothetical. We assume that there are a 

significant amount passengers at the light rail stations due to the TOD. These passengers 

select the PRT mode to travel from or to their desired PRT stations by connecting 

through the commuter light rail. The total demand in the example is 3,790 passengers 

during the peak hour. The ratio of the peak hour demand and 24-hour demand (K factor) 

is assumed to be 0.2. 
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The objective function specifies 𝛼 = 0.5 and 𝛽 = 0.5. It implies we place equal 

weight on the construction and users’ costs. To compute users’ costs we use value of 

time to convert the travel time to dollars, to make it comparable to the construction 

costs. In evaluation of the life-cycle travel time cost for the PRT, we calculate 10 years 

travel time. 

The proposed Lagrangian relaxation method can solve the two problems, with 

and without Steiner points, to a duality gap less than 1. The problems are deemed to be 

solved to optimality with such small duality gaps. The solutions are compared in Table 

2, and the solved PRT guideways are plotted in Figure 4.2. Without Steiner points, the 

total guideway length is 42.7 mile. Considering that the construction cost is $10 million 

per mile per lane, the construction cost (two lanes for both directions) is $ 854.2 million. 

With Steiner points, the total guideway length is 34.4 mile, and the construction cost is 

$687.4 million. The reduction is about 20%. Without Steiner points, the total user cost is 

$187.6 million (life cycle is 10 years); with Steiner points, the total user cost is reduced 

to $177.4 million. The improvement is about 5%. Hence, the introduction of Steiner 

points not only reduces the length (and investment) of the guideway, but also reduces the 

users’ travel time significantly. Figure 4.2 demonstrates that the introduction of Steiner 

points can also lead to significant difference of the GN topology. 

 

Table 4.2 Characteristics of the Solutions 

 With Steiner points No Steiner Points 
Guideway length (mile) 34.4 41.8 

Construction costs (million $) 343.7 411.8 
User costs (10 years, million 

$) 177.4 187.6 

UB 522.1 600.4 
Lagrangian LB 521.1 599.4 

Duality gap 0.9 1.0 
Computational time (secs) 1689.1 33.5 
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(a) with no Steiner points 
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(b) with Steiner points 

 
Figure 4.2 Guideway Networks Solved w/o Steiner Points  
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As for the computational performance, the scenario of with Steiner points takes 

up to 28 minutes to solve to optimal. It runs up to 2,970 iterations. The scenario of 

without Steiner points runs much faster. It takes up to 0.5 minutes to optimal, with 83 

iterations. It indicates that the GN design with Steiner points is much harder to solve 

than the one without Steiner points. The proposed Lagrangian relaxation algorithm can 

solve both scenarios to optimal within reasonable amount of time. The convergence 

performance of the algorithm is plotted in Figure 4.3. 

 
(a) Without Steiner points 

 
(b) With Steiner points 

Figure 4.3 Convergence Performance of the Lagrangian Relaxation Algorithm  
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CHAPTER 5.  CONCLUDING COMMENTS 

This chapter presents concluding comments on this research, highlights its 

significance, and suggests directions for future research.  

5.1  Summary and Conclusions 

In this study we present a model and solution algorithm for the GN design for the 

PRT supporting the transit oriented development. The GN is designed to balance two 

objectives, i.e., life-time construction cost and users’ travel cost. We show the 

introduction of a set of optional points, known as Steiner points, can reduce the GN 

length, as well as the construction cost, substantially. The resultant GN design problem 

is then formulated as a combined Steiner problem and assignment problem. We propose 

a Lagrangian relaxation algorithm to decompose the Lagrangian dual problem into two 

subproblems; both are trivial to solve. We use a realistic-sized numerical example to 

demonstrate the computational performance, and validate the fact that a set of Steiner 

points can reduce both construction cost and users’ travel cost significantly. 

5.2 Future Research 

The proposed model is for purpose of offline planning, or what-if scenario 

analysis, to assist PRT GN design to support TOD. On a large-scale network, the 

Lagrangian relaxation algorithm may entail a significant amount of time to solve to a 

desired duality gap. This is a theoretical feature of the algorithm because the complexity 

of the formulated model is NP-hard. In general, there is always a tradeoff between 

computational performance and solution quality. Nevertheless, we show the proposed 
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Lagrangian relaxation algorithm can solve a realistic-size PRT example to optimality in 

a reasonable amount of time. 

The proposed model framework is tested on a hypothetical instance only; 

implementation of the proposed method to a real-world PRT GN design represents a 

future goal. 
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